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SUMMARY

A thermo-elastic model of a Laser irradiated plate is developed.
The model accounts for plate flexure and shear deformation as well as
plate stretching. An exact solution in series form is found for the
dynamic response of a circular plate clamped at its boundary. The
plate is subjected to Laser irradiation at itscenter, and normal to
the plate surfaces. Experiments with a Holobeam model 630-Q Nd Laser
were conducted to verify the’mathematical model. A careful comparison
between theory and experiment of transverse plate deflection induced

by the Laser shows good agreement.




1.0 INTRODUCTION.

It is well known that Lasers have the inherent ability to deposit
focused, radiant energy on a structure or its elements. Lasers can
concentrate a short duration, high energy flux in an extremely
narrow beam. The effect of short duration, high energy irradiation
on an opaque solid can take several forms which are described (roughly)
as follows (see Chapter 3 of ref. 5):

(a) Complete local vaporization of the material, and the
resulting creation of openings (holes). If, in addition,
the structure so punctured is in a state of initial stress,
there will be an additional dynamic effect due to unloading
waves and wave reflections, with the possibility of stress
intensification.

(b) Sudden deposition of thermal energy, without a change in
phase. This causes sudden thermal stresses in the
structure, and because of the rapidity of the energy
deposition process, there will be thermally generated
stress waves.

(c) It is possible for the structure to experience partial
surface vaporization over the effective Laser beam cross-
section. This results in material removal and plasma
generation. Subsequent heating of the plasma gives rise
to shockwave formation, resulting in impulses transmitted
to the solid.

Effects (a), (b), and (c) can coexist, but they can be

separated for analytical purposes. The present analytical and experimental




investigation is concerned with case (b), above. We consider the
specific case of a thin, circular plate, rigidly clamped at its
boundary. The plate is subjected to Laser irradiation at its center,
normal to the plate surface. The beam energy density is adjusted to
cause heating of the plate, but to avoid phase changes (melting) of
the plate material. Our objective is (a) to develop a mathematical
model which predicts the thermoelastic dynamic response of the plate,
and (b), to perform suitable experiments to establish the validity of

the mathematical model.
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2.0 THERMO-ELASTIC PLATE THEORY.

2.1 Plate Strain and Stress Components.

We shall derive a thermoelastic plate theory which accounts for
stretching and bending of the plate. With regard to stretching, it
is assumed that the plate stretches uniformly through the constant
plate thickness h, with components ua(xl,xz,t). With regard to plate
bending, it is assumed that straight material elements (lines)
nrigihally normal to the plate median surface remain straight but
'te through an angle wa(xl,xz,t). In the following, Greek subscripts

on the range 1,2; while Latin subscripts assume values 1,2,3.

Thus the displacement vector u i=1,2,3 assumes the form

i'

ua(xllxzrzlt)=z‘pa(xllx2't,"‘ua(xl'let) (la)

Gz(xllxzozrt) = w(xllxzrt) (1b)
The general strain-displacement relation is

L oW . i (2)

3 2 "1 j.i

and upon substitution of (1) into (2) we obtain

1 1
€8 = 2 2Wq, 88,0’ * 20, 6* U,a’

(3)
1 o
€az Eza iiwa+w,a); ezz i

It will be convenient to define the plate strain components

h/2 h/2
12 12
Mg = S f € p2dz = — I €,.2dz = m (4a)
o 2 an" n a2 O o




2 hfz : hfz
o E A == € dz (4b)
qu h -h/2 zQ h -h/2 az
h/2 h/2
1 1
n, - [ €, dz== [ €,dz=n (4c)
aB h -hy2 aB h -h/2 Ba Ba

Similarly, we define the plate stress components by

h/2 h/2

HaB = _h£2 TaBzdz = -h£2'l' zdz = MBO. (5a)
h/2 h/2

Q = _h£2 T,,9% = -h£2 T,,42 (5b)
h/2 h/2

Nyg = _h£2 Tugd% = _h£2 TaodZ = Ngy (5¢)

In view of (3) and (4), the plate strain-displacement relations are

1

e = 3(‘1’0'8 + wB,a) (6a)
W VetV 5
n,= l(u +u ) (6c)

™
[
™
A
N

qa (7)

aB oz z0

2.2 Stress Equations of Motion.

We shall now derive the pertinent equations of motion with the

aid of Hamilton's principle




%2
[¢ (6k - 6u + dw)at = O (8)

bt

where 6K and 8U are the first variations of kinetic and potential
energy in the plate, respectively, and 8W is the virtual work of
external forces in an (admissible) variation of the plate displacement
field. The kinetic energy of a solid with volume V is given by

w2 pu ava=2{ (u 2 482+ 3av (9)
2 v 2 v 2 3
With reference to (1) we have
Uy = 2y, +@,  , Uy =W (10)

and upon substitution of (10) into (9), we obtain

gig WEE o .2 :
K = 3- ] ptz w w +w o+ uaua+ Zzua¢a)dz da
¥ A -h/2
1 3’
] i (ohw? +—phww + phd G )dA (11)
< 3 12

Taking the first variation of (11) with respect to displacements,

6k = [ (phwéw + 2. ph w Gw + phu 5u )dA (12)
A

We now integrate both sides of (12) with respect'to time from tl to t2,

and then use integration by parts on the right hand side. 1In line

with the requirements of Hamilton's principle, we set 6¢a-6w-6uu-0 at

t-tl and at t-tz. Thus we obtain the result

!2 sKkat = - f [ (phiidw + = pon w 6y, + phii Su )andt (13)

tl tl A

]



The variation of the strain energy density of the plate is given

by (see (37))
=M & +9068qg +nN__6§
6$fp g0 *+ @ 0a, + N gon o (14)
Consequently, the variation of the total strain energy is given by
= dA = M _§ + + () A
su { Giv; { (M gOm g + Q8a  + N gbn q)d

)dA (15)

- £ (MuBGwa,B + Qadwu + Qaﬁw,a + NchSum'B

where we have used (6). Upon application of Green's theorem in the

plane to (15), we obtain
su = é(MaBéwanB +Q fwn + Naﬁéuans)dl
-{ [("aB,B-Qa)Gwa + Qa'aéw + NaB'BGua]dA (16)

where C is the boundary curve of the simply connected domain of the

~

plate, and fi,% are unit vectors which are normal and tangential,

respectively, to C. We alsc note the relationships

“n T Mo by "a.“a

Ya ~ "oV Vo = %%

2 =al Q = Q% (17)
T Mae™ ZamgMas

"nn = nanBNaB ann lanBNGB

and

"GﬁswanB 2 "nnéwn b Mnlswl (18)
"aBGuanB = NMGun + anﬁul




It can be shown (p. 465, eq. (14.19), ref. [1]) that the virtual

work of external applied forces and boundary forces is given by

where p is the transverse, normal pressure acting on the plate in A
* *
and Mnn' Qn, etc., are stress resultants acting on the boundary C.

Upon substitution of (13), (16), and (19) into (8) we obtain

t
2 o 1 3
{ { [(-phit+Q +P) 8wt (- 75 ph™ Y 44 o 50 ) 8Y
1
+ (-phiimmolB B)G“a]d‘\
.
# &((M* -M_ )6y +(M* -M_,)8y +(Q.-Q ) 8w
c Hn nnn nf nl" 7L "*n *n

1

*
+ (N
n

+

St

*
2-Nn2)6u2+(um-nnn)6un)dwt =0 (20)

Since A, C and tz-tl are arbitrary, the two integrals in (20) vanish
separately. Furthermore, the displacement variations are arbitrary
in A and on that portion of C where stress resultants are prescribed.

We thus infer that in A

-Ph¥ + 0, +P =0 (21a)
1 3--
12 Ph Vs t Mg T % = O i
e L = 21
ph“a + NaB.B 0 : (21c)

and on C one member of each of the following pairs is specified:

(w, Qn). (Wn' Hnn)' (Wl an) (22a)

’

‘un' an'l)' (“R" "n") (22b)
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2.3 Constitutive Relations and Displacement Equations of Motion.

We assume that the Neumann-Duhamel relation expresses the relation

between stress, strain, and temperature in a homogeneous, isotropic

material, i.e.,
EE,, = (1+V)T
1]

For our present pur

vt, 6., + EaTS. .
1j

ij ~ Ukk ij

pose we write

EeaB = (1+V)TaB - VTYYGaB - szzGaB
2
Tza 2K Geza
and we ignore the relation
= - VT =0
Eezz Tzz YY+ EQT
If we set a=f in (24a), we obtain
E 2V 2EQT
= —c + -
Taa = @) Caa ¥ 1-v) T2z T 1w

and therefore

V
Tag = @+v) a8 * P %8 * T Tzzbap "

VE

+ B:TGaB

EaT

iias 1}

1-v "aB

Upon substitution of (26) into (5) and application of (4), we

readily obtain

Mag = DLA-VImgtvmbog)= =0y %ag * w1 _
A similar calculation reveals that
N § vé
- Eh - . _af
Yag (A-VIn gtvnSal- =0y * 1w
(1-v)
- Kz
% Ghay
pr—

vé
__22_. é + ___ggL

h/2

/ 2T,

h/2

dz

(23)

(24a)

(24b)

{24¢c)

(25)

(26)

(27a)

(27b)

(27¢)




&
9
v u
where
h/2
m=m =1 = $'$ = aE f zTdz
aa a,a M'1‘ -h/2
(28)
h/2
->
n=a = u -V'u N_ = QqE f’l‘dz
aa a o . i i -h/2
We now drop (neglect) the integrals in (27a) and (27b). Thus we
obtain the plate stress-strain relations:
Eh N'1‘
NaB = PR | [(1-\)):'10‘8 + VnGaB] - "—m 6(!8 (29a)
s M, =D[l1-V)im , + vm6 _] - —-—M—T— $ (29b)
af aB af (1-v) aB
Qa = thu (29¢c)
Upon substitution of (6) into (29), we obtain the plate stress-
displacement relations
N -—ﬂ—[(lw)(u +u, ) +2vu _§ l-ﬁ’lﬁ (30a)
M, = lD[(l-v)(w +y ) + 2w 6 .1 - Eﬁg (30b)
af 2 a,B "B,a Y.Y aB (1-v)
e k2Gh(y_ + w ) (30¢c)
QG a Qa
e W — T —




Further substitution of (30) into (21) results in the displacement

equations of motion for the plate:

(N_)

T Eh ) % T ,0
()hu(,x —'——-2(1-\)2) [ v)uG.BB + (IW)“B,Ba] _‘—(1-\)) (31a)
L on¥ =Lipra-wy + A4V, o 1 ~ K2Gh(Y +w )- b .7
% Bk Tl a,BB 8,Ba ™, 1w
(31b)
| AR
“ phw = K th'a,a + w,aa) +p (31c)

Equation (30) can also be written in (invariant) vector form:

]
" Vv
phu = —E (VTR T D] - (31a)
2(1-v°) v
% 11—2 oh3Y = %o (-2 + QT TP - k2ch +dw)
N
g You)
P - =) (31b)
N

phw = chh(V-w + Vzw) +p (31c)
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2.4 Energy Considerations

In general, the time rate of change of strain energy density is

given by W - (see p. 267 of ref. (1]). For the plate, this

¢
Tij ij
can be expressed as T 4 jé is ™ TGB (maB+nuB)+Tazqu' Consequently, the

time rate of change of strain energy per unit area of plate is

h/2
MP A -h£2 (Tap (Zag*iap) * Tazy) 9%
HaBﬁGB + Qu' + NaBﬂGB (32)

where we have used (5). However,

v ol oW H
W - P m + —PR ¢ + — n (33)
P amaB aB aqu 9 anae aB

and combining (32) and (33), we obtain

W s oW
(E‘E € HaB) ™8 +('8;:- E Qa)qa "‘(anaB X NGB) Rag™0 s

This result must be valid for all processes, i.e., ﬁuB' éu' and ﬂuB

are arbitrary. We thus conclude that

W W w
M, = —E, Q.= > N = —R (35)
aB 3-06 a 5;5 aB 3naB

and it is evident that the scalar function

Wp = wp(‘n"n"zz'qr q,eRy, 00, o00,,) completely characterizes the
mechanical configuration of the homogeneous plate. In view of (35)

and (29), the pertinent strain energy density function for the plate

is given by
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2M 2
2 T Eh Ehvm
= - + - + ———
2”p B VIN e T e N T Tag g * 2
(1-v7)
- —-2NT n + chh (36)
(1-v) %a%a
With reference to (36) and (29), we also note that
=M + N
Gwp aBGmaB QQan + aBGnaB (37)
and this result was used in (15).
2.5 Reduction to Classical Plate Theory.
' If we neglect rotatory inertia in (21), i.e., if 'fli_ ph3;f!a-0,
then the stress equations of motion reduce to
)
+ = W =
g %,a'P = PEV % = Ma8,8
or
v M = phw
a8, Ba*P = POV i

In classical plate theory it is assumed that material line elements

originally normal to the median surface remain normal during deformation,

i.e., wa--u'a. Consequently maB-v'aBand qa-o, i.e., the plate is rigid

with respect to shearing deformations. In this case

M
2 T
(M)
% = Mug,g = DT W, - _(”1-1_-# P
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or

1
(1-v)

> > 2
Q=-DV(Vw) -

Vou) (39b)
Upon substitution of (39) into (38), we obtain

.~ 4 1 2
phw + DV'w = p -~ a0 v M. (40)

Equation (40) is the well known equation of a plate within the frame-
work of classical plate theory, including thermal (bending) terms

(see (2], p. 384, eq. (12.2.15)).
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3.0 RESOLUTION OF BOUNDARY VALUE PROBLEMS.

3.1 Generalities

Inspection of equations (31) and (22) reveals that the plate
stretching problem can be decoupled from the plate bending problem
in the present formulation. 1In the present section we shall present
a formal solution for each of these problems. We shall use the
method of Williams (a modified eigenfunction technique) to obtain
a solution. Since the present approach is a generalization of a
technique developed in reference (1], we shall present only the final
results, omitting most of the details.

3.2 Plane Extensional Motion.

The problem is characterized by (21c), (22b), and (30a), i.e.,

-Dhua + NOB,B =0 in A (41a)
where .
N e (navy(e. . Jeove 8 1-5"'6—"‘E (41b)
ag 2(1-v3) a,B B,a Y., Y aB”  (1-v)
and
(un or Nnn) and (uz or an) (41c)

are specified on C. For a unique solution, we adjoin the initial

conditions

o - « O
ua(xl,xz.O) - ua(xl'xz'o) u, (414)

The solution of the problem characterized in (41) is given by

@
) (1)
ua(xl,xz,t) . t) + Z v,

(x, ,x
- f=1

2 ‘xl"z)qi (t) (42a)
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f
(s) (i)
Nog (X Xyrt) = Nog' (x).x ,t) + 121 Ny (%) 0%,)q, (t) (42b)
The terms of the solution (42) which carry the superscript (s) are
obtained from the quasi-static problem
(s)
NaB B in A (43a)
(s) Eh s) (s) N'r6c1§
s [(l-V)(u )+2vu S -] = (43b)
a8 2(1-v2) .B B. Y.Y aB (1-v)
and
(s) (s) (s) (s)
(u or N ) and (u and ) are
n nn L “’12 (43¢)
specified on C as in (41c)
Quantities in (42) which carry the superscript (i) are associated
with the eigenfunctions characterized by the homogeneous equations
1) a2 (1)
NGB.B phm u, in A (44a)
N Eh o) a1 g (2) (i)
= ———— [(1-V) (u ) +2 S ] (44b)
Nag 2(1-v3) «,8"8,a Vi, v %aB
(u'(‘i) or r(uin) =0) and (u(i) or N(;) =0) on C (44c)
g The eigenfunctions satisfy the orthonormality relation
[phu‘“ Naa = 6 (444)
Yo ij
A
With the above definition, it can be shown that
(t) = (qi(o)-Qi(o)] cosmit + o 1 (qi(o)-Q (o)1} sinwit
t
+ 0, (t)-0, £ Q, (1) sinw, (t-T)dt (45)
2




|
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)as

where
N
2 el T (i) s) (i)_ (1) . (s) ., (s) (i) (i) (s)
@9, () ){ 1w “a,0®? "* (a2 Py g g
(46a)
and
q, (0)-Q, (o) = / phu (1) (@) 4 (46b)
Yo
A
g,(@-0; (0) = [ phum (©)ga (46c)
A
3.3 Bending (Flexural) Motion.
In this case the problem is stated by (2la), (21b), (22a),
(30b) and (30c), i.e.,
-phw + Qa'a + p=0 (47a)
- o +m -G =0 (47b)
12 P Yo * Yag,8 T R
where
2
Q=& ch(wa + w,a) (47¢c)
M'r‘sctB
M g™ D (- V)(W B+¢B a) ZVwY Y aB] 1-v) (474)
and
(wn or Mnn)' (Wz or an) and (w or Qn) (47e)
are specified on C. For a unique solution, we adjoin the initial
conditions
wix %00 =Wy e x,00 = 4
(47£)
w(xlpxza()) — .(O) H i‘a(xlpxzro) e @;O)
The solution of the problem characterized by (47) is given by
— - SCA—
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(s) (i)
w(xl,xz,t) w (xl,xz,t) + izl w (xl,xz)qi(t) (48a)
(s) T )
S
Yo Xy o x,0t) = W % (x) 4%, 0 t) +i£l Yo (x)0x,)q, (£) (48b)
(s) ¥ it
S
Qp (%) 1%y t) = Q5 (x) 4%, t) +i£l Qy  (x)0%,)a, (t) (48¢c)
(s) 5 i
S
Mo %y X e E)= M g% (k) o, t) +1£1 Mg (%)0%)q, (8) (484)

The terms of the solution (48) which carry the superscript (s) are

obtained from the quasi static problem

; in A
. (s) (s)
"ag,8" %  ~© i
where
(s) 2 (s) (s)
Q =K tha bi ™ ) s
(s) 1 (s) ., (s) (s) M
Mg =3 DI~V wa,BwB.a) + ZWY.YGGB}- - GGB (494)
and
(W:S) or M;:)), (Wés) or M;:)) ana (w'®) or Q;s)) (49e)

are specified on C as in (47e). Quantities in (48) which carry the

superscript (i) are associated with the eigenfunctions characterized

by the homogeneous equations

(1) 2 (1)
= =phw’,w (50a)
qu,c . in A
3
Mg 6% = -0 13 o bt (50b)
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(1) (i) (i) (1) ui)

=0), and (w‘l)

(w or Q =0), (wn or M Mo =0) (50c)
on C.
The eigenfunctions satisfy the orthonormality relations
f (phw( i) (3) . 12 w(l)W(J) - (50d)
A 4

In this case it can be shown that qi(t) is again defined by (45),

and in this case

2 o § () () (), (8) (1)_, (1) (s)
wiQi (e) g i Qn o Qn +wn Mnn wn Mnn

(s) (1) (1) (s)

+ ¥y “bp M o )aA
(%) i AT 11
& 1{ (' lp + s b A (51a)
(0)-Q, (0) = [ (phw'®uwd) h> vl ) yan (51b)
9 i 3 P12 Y% %
3
qi(o)-Qi(o) = [ (phﬁ(o)w(i) +p :2 w(o)w(1) (51c)

A
In the following we shall consider the special case of a
circular plate with radius a which is rigidly clamped at its boundary.
The plate will be subjected to laser irradiation at its center, i.e.,
the excitation as well as the response of the plate will be axisymmetric.
In addition, it will be assumed that the plate is at rest and in a state
of static equilibrium at t=0. For these reasons we now write the
principal equation in axisymmetric polar coordinates with the pole
at the center of the plate.

Consequently we have

(a) Plate Stretching:

L
o

(52a)

“!' = ur,t), “e
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b
aNr:r 1
-phii + —= 4+ = (B_-Ngo) = O (52b)
N
Eh du Vv T
T i LG
1-v
N (52c)
N = Eh .a_u + 1 ) — —T.
e 3 VET*EY T I
1-v
r u(a,t) =0 (52d)
u(r,0) = 0, u(r,0) = 0 ' (52e)
r u(r,t) = u(s)(r,t) + Z u(l) (r)eq, (t)
i=1 S
(s) T (i)
N_(r,£) = N_(r,t) + ) no(r)eq (€) (53)
i=1
4 Ngg (r,t) = Ne(as) (r,t) + igl Ne(;) (r)'qi(t)
2 w % ) (i)
-5 wio; (&) = - 55 [ Ny g ruyer
. % (54)
q (t) = @, (t)-w, CI’ Q, (T)sin w, (t-T)dT
(b) Plate Bending
9 Qr
-phw + = s 0
(55a)
3 9
ph_ . : 4O | o, oo
124"' or *z"‘rr"ee’Qr "
M
M, =D+ 20 - o
W 1 M
Mg = Dlvg + V) - 1= (55b)
2 ow
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Y(a,t) w(a,t) =0

w(r,0) = 0, Y(,0) = P,0) =0

w(r,0)

W(r't)=w(s)(x*,t) + ZW(I)(r)qi(t)
i=1

oo
5k ,t) + ) W(l)(r)qi(t)

i=1

‘l’(r,t) =w

a
2 P . ) KR (i)
Wil (R = =t £ Mg Ve

t
q, (t) = Q, (t)-w, (j) Q; (T)sin w, (t-T)dT

(55¢)

(554)

(56)

(57)

j—
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4.0 LASER INDUCED HEATING OF THE PLATE

4.1 Temperature Distribution in the Plate

In order to obtain a mathematical model of the temperature
distribution induced in the plate by a pulsed laser, several
assumptions will be made. These assumptions yield a model which is
both physically realistic and mathematically tractable in the forth-
coming analysis. The geometries of the clamped circular plate and
of the laser irradiance are shown in Fig. 1. With reference to the
dimensions shown in Fig. 1, the five basic assumptions are as follows:
(A-1) The laser irradiance is spacially axisymmetric with a Gaussian

distribution of the form exp(-(r/d)2] where d, which is called

the laser spot size, is the radial distance at which the

incident irradiance has decreased to 1/e of its maximum value Im.
(A-2) The laser irradiance also has a Gaussian distribution in time

of the form exp[-(t/T)Z] where T, which is called the pulse

duration, is the time required for the incident irradiance to
decrease to 1/e of its initial value.

(A-3) The radius of the plate is essentially infinite comparec¢ to
the laser spot size, i.e., a/d>>1.

(A-4) The plate is sufficiently thick so that, for the time interval
of interest, the temperature rise of the back surface does not
have an appreciable effect on the motion. This condition is
difficult to express analytically, however one rough approxi-
mation is obtained from the inequality hz/lxtp>1. Here h is
the plate thickness, K is the thermal diffusivity of the plate

and tp is a characteristic time, e.g., the fundamental period
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Figure 1: Geometry of Plate and Laser Irradiance




=Y

25

for free vibration of the plate.

(A-5) Over the time interval of interest, thermal diffusion in the
radial direction is negligsble. This condition can be expressed
analytically as follows: d2/4xtp>1.

Note that assumptions (A-3) and (A-4) permit us to treat the plate as

a semi-infinite solid when computing the temperature distribution.

The temperature distribution induced in a semi-infinite solid by an

incident, Gaussian laser pulse has been determined by J.H. Bechtel [3].

As a result of assumption (A-5), Bechtel shows that the temperature

distribution is approximated by the function

2 2% 2
T(r,z,t) = —>— expl-(r/d)“] f exp[-(t"/T)"]°
—

T -0

M2

expl=22/aKit-t")] (e=t") (58)

where z is the distance measured into the solid from the irradiated

surface and,

-1/211/2

To = Im(l-R)(ﬂKcDC) (59)

In (59), Im is the maximum incident irradiance, R is the reflectivity
of the plate surface, Kc. P, and C are the plate's thermal conductivity,
density, and specific heat, respectively. Note that the thermal
diffusivity prb/QC.

A more convenient form of (58) is obtained by making the change

of variable O=(t-t”)/T. The result is,

T(r,z,t) = T, exp[-(r/a)zj [ exp[-(én-9)2]-exp(-zz/4x16]6-1/2d6
o

(60)




26

4.2 Thermoelastic Forcing Functions

The thermoelastic forcing functions N,r and HT are defined in (28)

and rewritten here as follows:

' h/2 h
N (r,t) = aE [ Taz = aE [ Taz (61a)
-h/2 o
h/2 h b b
M_(r,t) = aE [ T2dz = aE[[ Tzdz - — [ Tdz) (61b)
T 2
& -h/2 o o

where Z=z-h/2 is measured from the middle surface of the plate as

! shown in Fig.l. Substitution of (60) into (61) yields the following

results:
NT(t.t) = No exp[-(r/d)le(t) (62a)
M (£ t) =M exp (- (r/d) 2 M(t) (62b)
where
N = wl/zaEI (1-R)T/PC
= - (63)
M_ = N_h/2
% 2
N(t) = /2 expl- (5~ 0)°Jerf (¢)a0 (64a)
(o]
27 2 1/2 2
M(t) -'n-l/ !exp[-(%-e) 1{ert (¢ )=2m / [1-exp(-¢ )1/ ¢}ab
g (64b)
¢ = h(4xt0) Y/? (64c)

4.3 Numerical Values For Parameters
In order to compare the forthcoming analytical results for the
motion of the plate with the experimental results, the following

numerical values will be used for the parameters:
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E = 46.7 x 10° 1b/in’

v = 0.33

K = 0.86

p = .7287606 x 10 > 1b*sec>/in®

K = .726 x 10" 2 in’/sec.

h = .0195 in.

a = 4.523 in.

A=a/d = 16

T =40 x 10 sec.

These parameters correspond to the experimental phase of this project,

as described in Section 7 of this report.
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» 5.0 FREE VIBRATION OF CLAMPED CIRCULAR PLATES.

5.1 Transverse Vibrations

In the case of axisymmetric, free, transverse vibrations,

w(i)=w(i)(R), w;i)= Ji)(R), Wéi)zo (65)

where R=r/a is a dimensionless radial coordinate. The stress-

¥ displacement relations become (see (55b)):
(1) .
(i) D 4y v (1)
Mz'r S ( dR = R v )
(i) -
¢ né;) - g v __ng + %w‘”) (66)
: : (i)
(i) 2 (i) 1l dw
Qr = K Gh(V + o ———dR )
* Substitution of (66) into (55a) yields the following homogeneous

; system of equations for the determination of the eigenfunctions:

For O<R<1,
i 0 2 (i) (1)
&' 1 aw R T e S
5 +R - +!.in *RdR (RV ') 0 (67a)
dR
2 (i) (1) : (1)
d “"2 + % d":m + mf - Ly -1—2- Wi, %d—‘f&—)-o (67b)
drR R LH
while at R=],
vy =Py o (67¢)

(1)

In addition we require w (0) and w(i) (0) to remain bounded. In (67),

e e e (68a)
K G(1-v’) K (1~-v)
2
A e
H = 12 (‘) (68b)
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o (R )? (68¢)
1 v 1

P
v2 = —_—E_E_ (68d)
P pa-v)

The normalization condition (50) becomes:

2 1
2ma“ ph f [(w
(o]

42022 (') %) par = 1 (69)
The solution of (67) through (69) is given in [1]) (pp. 483-488).
The following is a summary of that solution in a form amenable to
numerical computations.

When solving equations (67), one naturally obtains a division
of the frequency spectrum into two intervals, the low frequency
range (0<28292<1), and the high frequency range (£H2Q2>1). The
number of natural frequencies contained in the low frequency range
increases as the thickness of the plate decreases. 1In fact, in the
forthcoming forced motion example we will find that all the natural
frequencies which contribute significantly to the solution are
contained in the low frequency range. Therefore, the forthcoming

analysis will be restricted to the low frequency range
o< w? <1 (70)

The frequency equation as well as the eigenfunctions can be expressed
conveniently in terms of the parameter X which is related to the
frequency §l as follows: Let,

R .
A=HX . (71a)

T=1+ (R+41)) (71b)
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2.2
U= 201"/C (71c)
Then,

2,2

wq? = %-c(1-¢1-zu ) (71d)

In the low frequency range, U<<l and therefore it is advisable to use
a truncated Taylor series to compute the values of v1-2u. Substitution

of this series into (71d) yields the alternate formula

H292 = Azn (72a)

where,

n=&/¢ (72b)
and,

£ = 14u(.5+n (.5+u(.625+u(.875 + M(1.3125 + H(2.0625)))))) (72c)
In (72c), a sufficient number of terms have been retained in the
Taylor series to yield values of £ correct to at least eight

significant figures. 1In view of (72a) and (71la) we conclude that
A 2
Q-ilﬁ'-_-nx/n_ (73)

This last equition is very revealing. For the lowest frequencies of
a thin plate, A<<1l, therefore n=l1 and n=ux2.

In terms of the parameter X, the frequency equation may be
written as follows:

Jo(x)Il(Y) + f(X,Y)JI(x)Io(Y) =0 (74)

In (74), Y is related to X as follows:

Let,

|23

c'.i:I (75a)
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2

p=1+ el =1 (75b)

and,
2

§ = -2e(1-€)/p (75¢)

Then,
Y 2 1
C(i) = Ep (v1-26 -1) (754)

Since 6<<1 in the low frequency range, v1-2§ may be computed from a
truncated Taylor series, in which case (75d) is replaced by the

following formula:

Y 2
) =r= Q-8)g/p (76a)
where,
q = 148 (.548(.5+8(.625+6 (.875+8 (1.3125+6(2.0625)))))) (76b)
Consequently,
Y=sX where s = Vr (77)

Note that for the lowest frequencies of a thin plate, s=1 and therefore
Y=X. The function £(X,Y) appearing in (74) is defined as follows:
£(X,Y) = s/b (78a)
where
b = (r+l)/(1+rl) (78b)
Note that f(X,Y)=1 for the lowest frequencies of a thin plate. Com-
bining this with the observation that Y=X, the lowest frequencies of
a thin plate may be approximated by the roots of the equation

J (X)I_(X) + J_(X)I (X) =0
o 1 1 o

which is in fact the frequency equation of classical plate theory for
a clamped circular plate.

We note that the functions e’, 1(¥), and I (¥) all increase
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exponentially for large values of Y and have no positive real roots.
Therefore, the frequency equation (74) can be modified by dividing
the entire equation by e-YIO(Y)Il(Y) without affecting its roots.

This yields the modified frequency equation

J_(X) Jl(X)
F(X) = — + £X,Y) —F—=0 (79)
e IO(Y) e Il(Y)

Equation (79) is more convenient to use in numerical computation than
(74) since the maximum amplitudes of the oscillations in F(X) remain
bounded as X increases. Furthermore, an examination of the asymptotic
behavior of Bessel's functions reveals that the roots of (79) are
approximately given by

X, = im for i=1, 2, 3, ...

i 4 (80)
(i-z)ﬂ for i=N, N-1, N-2, ...

>
e

where N represents the total number of frequencies in the low frequency
range. The value of N is easily computed by noting that £H292<1 implies
that €<1 which in turn implies that X < %-/TE:ET7E. Therefore, N is
the largest integer which is less than (% + #%'/TE:IT7E. Using %the
parameters given in 4,3 yields N=290 in the present example. The

first 35 roots of (79) were computed using a modified Newton-Raphson
iteration technique with starting values of xl,...x35 given by the first
equation of (80). The modification was to use the first central
difference [F(x+.0001)-F(x~.0001]/.0002 to approximate the derivative
a in the iteration formula. This technique yielded the roots to at

dax

least eight significant figures accuracy within two or three iterations.
w
The first 35 values of X,, @, and ;ﬂ*— are listed in Table I.
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The corresponding normalized eigenfunctions are given by the following:

For OQO<Rg1,
(i) (1)
v e x F Y m) (81a)
IS T R ¢ (81b)
i a 1
(i) 2 .2 (4) (2)
M (1-v2)hﬂ X, XF R)--vx P (R)/R) (81c)
Hé;’ » (Lz)hnzxi[vxiri“) (R)+(1-\))XiFi(2) (R)/R] (814)
1-v
2
4 QF
Doy By, Y w (81e)
1-v i
where,
F) 2 3 X R)-c.I (Y.R) (82a)
i o i io i
F? - a0 X.R-4.I.(Y.R)] (82b)
i Mo L i s R
(3) o
= X ——
P, 3 (XR) + b, I,(YR) ‘ (82¢)
4 a0 ®R +Db.c.I (Y.R)] (824)
i i o 1 o 10 1 s ¢
and,
2ma phP
i
P2 = a.3%x.) + B32(x,)-C.J (X,)J, (X,) (83b)
3 "R, 373 Lottt
2
b
3oy My
Ai 1 2 Ai‘i (ri 1) (83c)
2 2
31 = (1-f1) + Aiai (834)
2(1-r fi) 2 2
C‘ = "1“"1’ (1+(1+£)aibiniki/(2ri)) (83e)
e w'f
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; (1+xr . 2)/(1+%) \\
i i

(r.+2)/(1+x R)
i i

1]
]

(=2
]

(o]
"

Jo(xi)/lo(Yi)
d = Jl(xi)/xl(vi)
B, = s. 4, (84)
1 p [ 5

g /=X

m
— P
I3 %4n;Py)

R
(]

o
e, = a.q,
i l/xi

Hh
]

£(X,,Y.)
(G |

5.2 Extensional Vibrations

In the case of axisymmetric, free, extensional vibrations,

F (1) _ (i) ) o
, u ' =u(R), ug E0 (85)

(i) -
N:i) = Ehz & + %'u(l)) (86a)
a(l-v’)

DR —

dR

a(l-v ) :
s Substitution of (86) into (52b) yields the following homogeneous
system of equations for the determination of the eigenfunctions:

¥ For O<R<1,

2 (1) (1)
a1 +m§-%w“’

=0 (87a)
dRz R dR R

while at R=1,

u(i)(1) =0 (87b)
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We also require u(l)(O) to remain bounded. The corresponding normali-
zation condition (44d) becomes,
1

2
2ma ph f (u
o

(i))szR =1 (88)

The solution of (87) and (88) can easily be shown to be

(i)

u {R) = AiJl(QiR) (89a)
EhA,
p i e & L 03 @ my < 225 @ o (89b)
rr 2 o i R 1L
a(l-v )
. Eha, >
8y e —Li . g @r) + LY 5 @R (89¢c)
00 o i R 1 i
a(l-v)
where,
L = mapna’ @) (89d)
o 1
A
i
and,
3, @) = o, PRI R (90)

An examination of the asymptotic form of JI(Q) reveals that the

natural frequencies are approximately given by

~ 1
91 = (i + z)vr 7 S L 108 A S

Table II lists the first 30 natural frequencies taken from [4] (p. 748

Table VII). The corresponding values of Jomi) and a:-lgni.:lz ’

are also listed for convenience in future computations.

(Qi)l
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TABLE II

NATURAL FREQUENCIES OF EXTENSIONAL VIBRATION

i Q J Q) a®
i o i i

1 3.8317060 -.4027593957 1.024227855
2 7.0155867 .3001157525 1.007484896
3 10.1734681 -.2497048771 1.003591665
4 13.3236919 .2183594072 1.002101537
5 16.4706301 -.1964653715 1.001377622

6 19.6158585 .1800633753 1.000972230
7 22.7600844 -.1671846005 1.000722608
8 25.9036721 .1567249863 1.000558091

9 29.0468285 -.1480111100 1.000443971
10 32.1896799 .1406057982 1.000361582
11 35.3323076 -.1342112403 1.000300165
12 38.4747662 .1286166221 1.000253167
13 41.6170942 -.1236679608 1.000216398
14 44.7593190 .1192498120 1.000187095
15 47.9014609 -.1152736941 1.000163364
16 51.0435352 .1116704969 1.000143877
17 54.1855536 -.1083853489 1.000127682
18 57.3275254 .1053740554 1.000114073
19 60.4694578 -.1026005671 1.000102530
20 63.6113567 .1000351468 1.000092653
21 66.7532267 -.0976530158 1.000084139
22 69.8950718 .0954333390 1.000076746
23 73.0368952 -.0933584533 1.000070287
24 76.1786996 .0914132722 1.000064609
25 79.3204872 -.0895848220 1.000059593
26 82.4622599 .0878618760 1.000055139
27 85.6040194 -.0862346634 1.000051167
28 88.7457671 .0846946348 1.000047609
29 S1.8875043 -.0832342730 1.000044408
30 95.0292318 .0818469379 1.000041521

-1
o w 2
ui = [2 QiJo(Qi)]
e ] . -
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6.0 FORCED MOTION OF THE CLAMPED CIRCULAR PLATE

6.1 Transverse Motion

In the subsequent forced motion analysis we shall find it con-
venient to introduce a dimensionless time scale based on the fundamental
period of free transverse vibrations. Thus, we define

w
1
tl S t (119.96775)t (91a)
or, conversely,

t = f’—" t. = (8.3355736 x 10 )t

(91b)
1 1

1

The thermoelastic bending moment M

" is given by (62b) with M(t)

defined in (64). A very accurate closed form approximation of M(t)
can be obtained from (64b) as follows. The term exp(-(§-9)2} tends

to strongly focus our attention on those values of 0 for which

|§-8|<5. Indeed, when |$-6|25 then exp[—(§-6)2]$1.4 x 10"t

and the contributions to the integral in this range are negligible.
The smallest time of interest in the forced motion solution is on the

order of I%E of the fundamental period. Thus, the time interval of

interest corresponds to t 2.0l or t28.336 x 1072 or % 2 2084. At ‘%= 2084,

the inequality |%-9|<5 yields the inequality 2079<6<2089 which when
substituted into (64c) yields the result 12.52<¢<12.54. Note that ¢
is essentially constant over the range of values of 6 required to

evaluate the integral (64b) for this instant of time. Furthermore, if

%’> 2084 then ¢ varies even less over the range of values of 0 needed to

perform the integration. Consequently, for t.2.0l1, ¢ can be considered

1
a constant in the integral (64b) with 6 = -:-, bl
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w 1/2
12 -1/2 W
¢ = h(4Kt) = h(§;§€;) (92a)
or

1/2

¢ = 1.2533390 tl- (92b)

After removing the constant expression involving ¢ from the integral,

all that remains to be integrated is

oo
ks / expl-‘%"e)zlde " %(1+erf(%)] e

o
since % 2 2084 and erf(x) is one to ten decimal places for any x>5.
We thus arrive at the following approximation for the thermoelastic

bending moment:

1/

M(t)) = erf(¢)~2m 2[1-exp(-¢2)l/¢ (93)

According to (64b), M(0)=1/2 but M(t) very quickly increases to 1.
Since this rise time is less than I%E of the fundamental period we
will simply assume that M(0)=1 as predicted by (93). As a result of
these observations we shall henceforth use (62b) with M(tl) given

by (93) to represent the thermoelastic bending moment. A graph of

H(tl) vs. t. is shown in Fig. (2).

1
The generalized force Qi(tl) is now evaluated by substituting

(62b) into (57). The result is,

- HaRT 8
2 _ (2T -A°R° 4 . (i)
w0, (t)) = (TTOIM M(t)) c{e ax (RvT7)ar

(94)
1 2.2 (i)
4ma, 2 2 -A"R"Y
- o)A M ML) [ R dar

o

where A--:- is the spot ratio. Consider the integral
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1 2.2
1=[ RPeMR g (95)
o

By substituting (81b) and (82b) into (95) we obtain

1 5.9
1 2 -A'R
I=2xXa £ R“e (9, (X,R)-4, T (¥ R)}dR

2.2
o =e 256-6.6 x 10 Ak2 and therefore the upper

Notice that at R=1, e
limit of the integral can be extended to infinity without noticably
affecting the value of I. This technique allows us to obtain the
following closed form expression for I:

Xj¥535

4A4a

I= (x, expl-(X,/28)°] - 4,¥, exp((Y,/28)°]} (96)

i

Substitution of (96) into (94) then yields the desired result,

1m°(1+v) Ki
X,0, (t ) = ——=—e—.— M(t_ ) (97a)
- S S 4A2Eh H2 1
where
2 2
= -(X -
K ei{expl (X./28)7)-B, expl(Y /2A) 1} (97b)

with e1 and 8i defined in (84). Further substitution of (97) into

the second of (57) yields the result

ﬂﬂo(l+v) K
X6, () = —20o—onr —= g (t.) (98a) .
¢ e alm @ 2X ‘
where,
%
g, (t)) = M(t )-2mR, £ M(8)sin 2R, (t,-0)a0 (98b)
and where
i |
Ri - z,—' ’ 1-1'2'35090 (%C)
1

An efficient scheme for the numerical evaluation of qi(tl) is given
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in Appendix I.
The quasi-static problem for the present .example is characterized

by the following equations:

1
Rar e, ) =0 (99a)
(s)
dM
rr 1 ., _(s8), _ _ (8)
" + R (Mrr -nee ) aQr (99b)
where,
(s) = -]; chh( w(s) + dw(S) (100a)
Qr a s dR
(s) M
(s) _ D4y M. (), T
Hrr a( dR . R v ) 1-v e
(s)
(s) D, &y 1.0, %
HOB 2i a(v 4dr = R v ) 1-v 1200c)
The corresponding boundary conditions are:
w1 =9y®a) =0 (101)
vhile, w'®? (0) and ¢'® (0) remain bounded.
The solution of (99) through (10l1) is summarized below.
(s) M az
viURE)) = - = M(t, )W _(R) (102a)
DA (1-V)
(s) Ho.
/] (R.tli ey ST H(tl)‘l’ (R) (102b)
DA® (1-v) +
(s) Mo
PS", (R.tl) il 3 H(tl)!&s(n) (102c)
(s) "o
"60 (R,tl) aln ll(tl)Hes(R) (102d)
(s) s
Qr (l.tl) =0 (102e)
5l = —— - v
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where,
ws(n) = - %l(l-nz) (1—e'A2) + 1nR2 + EI(A2R2)-BI(AZ)]
’ Y_(R) = %li;u-e“‘z"z)-a(1-e"‘2)1
Mo (R)= ;—21;5 (1-e_A2R2) + :12' T (1-e'“2)
' Mes(R)- ze-Asz ks A_21R_2 (l_e-l\zkz) + ;13 (%_:-_:) (l-e-Az)

In (103a), El(x) is the exponential integral defined as follows:

- e-t > -t dt
E, (X) -’{Tdt -c{ fime ) T - Rnmy

(103a)
(103b)

(103c)

(1034)

(104)

where Y=.5772156649 ... is Buler's constant. In the limit as R*0,

(103a) becomes

2
' W_(0) = %(hmz + EI(AZ) +Y = (dea™ )] (105)
Fig. (3) shows the radial variation of the quasi-static deflection
. H'(R). As expected the maximum deflection occurs at the center of the

.
-

s

substituting (102), (98), and (81) into (48). The results are

M (1+V)
w(R,t,) = = —— [W_(R)M(t_)-S_(R,t.)]
’ 1 Azﬂzgh s b 1
M
2]
nn(n,tl) S5 [uns(n)n(cl) + sz(n,tl)l
"O
8 nee(n.tl) bl [Hes(am(tl) + s3(n.t1)l
M
AL -
Qr""tﬂ 24 (1-v) s‘(n.tl)
L]

plate. Fig. (4) shows the radial variation of the quasi-static bending
moments. Again the maximum moment occurs at the center of the plate

where HRS-H . The complete forced motion solution is now obtained by

(106a)

(106b)

(106¢c)

(1064)
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where,
L (1)
S (R,t)) =& izl K.F. " (R)g (t)) (107a)
o i g
s,(R,t)) = -2-—2— _2 EX [l -~ <o 1g, Ik, ) (107b)
A" i=1 i
£ v m  FH )
S_(R,t.) = —= KX [ + 1g. (t.) (107¢c)
- Bt SRR BN L X, R 7T
- Qi (3)
s, (Rt.) =— J K, ——F," (Rg,(t)) : (1074)
Mo AR T nzxi i il

Since the maximum deflection and moment occurs at the center of the

plate, we set R=0 in (107) to obtain:

_F (i)
s, (0,t)) ) s g, (t)) (108a)
i=1
e
s,(0,t,) ) s, 'g;(t)) (108b)
i=1
s.0,t) = § sPg (t) =s_(0,0) (108c)
g Loy B il - A
where,
) _ % . i)
s, =3 XD (1084)
2 (i)
X; D
1) = W WSRO ¢
s, =3K —Az e =0 ) (108e)
2 (1)
X; VD
(1) @ i .3 ), ot}
5, -2x1A2(1_v +D,77) =8, (108f)
and,
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D" =1, (108g)
(1)

02 = ai(1+bici) (108h)
Y

D, =3 a(1-8) (1084)

;1), S;i), and Ki are presented in Table III.

This table shows that by summing the first 35 values we are guaranteed

The first 35 values of S

at least 4 significant figures of accuracy in our final results.
Fig. (5) is a graph of the dimensionless, negative displacement at the

center of the plate:
W(O,tl) = WS(O)H(tl) - Sl(O,tl) (109)

The negative displacement was used to facilitate later comparison with
the experimental results. The periodic nature of sl(o,tl) is evident
in this graph with the second cycle beginning at approximately
t1-1.04. The large initial slope of the deflection curve indicates
that the thermoelastic forcing of the plate behaves somewhat like an
impulse (finite initial velocity-slope) or perhaps even a doublet
(infinite initial velocity-slope). Fig. 6 shows the dimensionless
bending moment at the center of the plate

u“(o,tl) -uee(o,tl) 1

= —[M
Ho HO 2 RS

(O)M(tl) + Sz(O,tl)] (110)

The very nervous behavior of the bending moment reinforces the previous
observation concerning the singular nature of the thermoelastic forcing

of the plate.
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TABLE III

MODAL CONSTANTS FOR TRANSVERSE MOTION

%

(1)
"2

(1)
s2

16

2u

5.7112283E" 1
3.0456808F" 1
1.93846657
1.3612248F" 1
9,9915163F 2
7.4913310F° 2
5.6661747F 2
4,2911681F 2
3.2382838F 2
2.4270102E 2
1.8022708F 2
1.3237398E 2
9.6038165F 3
6.8753734E 3
4,8529442F 3
3.3750873F 3
2.3115416E 3
1.5583386F 3
1.0337209E3
6.7451118F 4
4,3281518F 1
2.7305041F 4
1.6932583F 4
1.0319717F u
6.1803085F" 5
3.6365677E°5
2.1021345F°5
1.1936320E"5
6.6570270F " 6
3.6U463055F 6
1.9613512F° 6
1.0359937F° 6
5.3731758E" 7
2.7362285F" 7
1.3680389F" 7

4,73551607 1
2.38601497 1
1.5226375F 1
1.06909837 1
7.8473202EF 2
5.8836776F 2
4, 4502032F 2
3.37027567 2
2.5433422F7 2
1.9061693F 2
1.4155002F" 2
1.0396628E 2
7.5428198F" 3
5.3999057F" 3
3.81149357°3
2.650787u4F" 3
1.8154805F 3
1.2239162F 3
8.1188251F 4
5.2975984F 4
3.3993225F 4
2.1445329F 4
1.3298820F &
8.1050872F"5
4,8540029F" 5
2.8561536F° 5
1.65101267° 5
9,3747641F 6
5.22841687 F
2.8638017F° 6
1.540U4416F 6
8.1366755F 7
4,2200824F" 7
2.1490289E" 7
1.0744552F° 7

3.3550525F" 2
7.39379557
1.0512335F" 1
1.3101330F" 1
1.5008695F "1
1.61891u4u7"1
1.6651482F" 1
1.6455553F 1
1.5700721F"1
1. 65447528 1
1.3024004EF"1
1.1369863F" 1
9.6678676F 2
8.0153195F" 2
6. UBRU5815F 2
5.1227596F 2
3.9538539F 2
2.982826uL4F" 2
2.2003u407F"2
1.5876155F " 2
1,120760UF" 2
7.7427371F"3
5.2357548F" 3
3.4661286F 3
2.2u67710E" 3
1.4262052F° 3
8.8668192F 4
5.3996324F 4
3,2211724E7y
1.882580u4F 4
1.0780150F " 14
6.0485680F"5
3.3255850F" 5
1.7918336F"5
9,4616222F"6

T
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6.2 Extensional Motion

As in 6.1, we shall introduce a dimensionless time scale based on
the fundamental period of free extensional vibrations, i.e.,

w

1
t2 = t = (36156.676)t (1lla)
or conversely,
¢ =28 o coozvesTAN0 x 2075 (111b)
w 2 2

An accurate approximation of the thermoelastic normal force NT can be
obtained in a manner similar to that used in section 6.1. The reasoning
goes as follows. The time interval of interest in the present problem
corresponds to the first few cycles of the extensional motion. Thus,

ve shall consider the interval .0lst <10 which implies 6.915 < -:— < 6915.
Since |e-§| <5, 1.91556<6920 and therefore 6.876s¢<413. In this interval,

erf(¢)=1 to more than ten decimal places and therefore (64a) becomes,
‘ 172 T 3
N(t) =™ / I exp[-(;u—a) 146 = 3{1+erf(%0] =1
o

t
since erf (?) is also equal to one in the time interval of interest.

Thus, we shall use N(t)=1 for t>0, or
NT(R.(:) =N exp[-(r/d)zl for t>0 (112)

The generalized force Qi(tz) is now obtained by substituting (112)

and (89a) into (54). The result is

N Q 1 -
2 o g % -A°R
WO, (t)) = -(75)2ma” — A1£J0(91R)° RAR.

a2g? 12

Again, noting that e =6.6 x J.O-1 at R=1, we may extend the upper




52

y limit in the above integral to infinity without noticably affecting the

value of the integral to obtain:

1 e 3 -ni/nz
r | 3 @ Rre RAR = — e
o i 2A
Thus, 2
N ama d N, 2
H o i 1
Qi(tz) = -(1—_-\’-) ) exp[-(z—A) ] (113a)
' Qv
ip
and 2
| No aﬂAid Qi 2
! qi(tz) = —(_1-\)) __Q v2 exp[-(ﬁ) Jcos 21!Rit2 (113b)
ip
Y3
where, R, = — , JuY 2300k s
i wl

The corresponding quasi-static problem is characterized by the

equation
danN
d.14d (s),, _ .1 T :
dR[R ar (Ru )] a(Eh) 3R ’ O<R<1 (114)
where u(s) (1)=0 and U(B) (0) is bounded. The solution of (114) is readily
found to be

(s) N (1+v)
u

- o)
. = U_(R) (115a)
where,
2.2 2
U_(R) = AR[ -% g ") - lz (Fue ™™ 33 (115b)
A%R A

Substitution of (115) into (52c) yields the normal forces

l.(l)
rr 1
.o - an(m (116a)
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(s)
00 1

T AR NeS(R) (116b)
o

where NRS(R)-HRS(R) and NGS(R)-MGS(R)' (see eq. (103)). The radial

variation of the dimensionless displacement US(R) is shown in Fig. (7).

Note that the maximum displacement occurs approximately at R=0.07 and

thus that is where we shall study the motion of the plate.

The total solution is now obtained by substituting (115), (116),

(113), and (89) into (53). The result is:

u(R,tz) N (1+V)

o)
3 = [Ug(R)-S, (R,t,)] (117a)
N (R,t.) S. (R,t.) S (R,t))
rr CABN U | 2 o 2
—E;—— 2(NR8(R) AR i e ] (117b)
N..(R,t_) S. (R,t_) vS (R,t.)
00" 2 1 152 o 72
uo -Z(NGS(R) + Y + Yo (117c)
where, : & 3 ‘(91/25)2
s, (R,t)) = ;-izl a3, @ R)e cos 2mR.t, (1174)
it 2
" & -(91/21\)
s, (R,t,) = =, ! 23 @Re cos 2mRt, (117e)
A i=1
and
o n 2 -1
a, = (2 QiJo(ﬂi)] ; (117f£)

The dimensionless displacement
u(.07, tz) = U.(.o7)-sl(.o7, tz)

is shown in Pig. (8). The wave nature of the solution is clearly evident

in this graph. The waves originating at the heated spot propagate out to
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the clamped boundary are reflected and then propagate back again
towards the center of the plate. The passage of these waves at
R=.07 is clearly seen in this graph. Since the maximum normal
forces occur at the center of the plate, we plot

N r(o,tz) b Nee(o,tz)

Nrr(O,tz) = - = (118)
o o
in Fig. (9). In view of (117),
— 1 1+V
Nn_(o,tz) ’-EINRS(O) + m So(oltz)]
= (119a)
= Nee(O,tz)
since
@
s, (0,t,) = .[ K, cos 2mR t, (119b)
i=1
ZSl(R,tz)
=1m L2 (119¢)
R*0
with 2
kK, =% %0 e e : (1194)
R 1%

An examination of K1 reveals that 30 terms are sufficient to obtain

so(O.tz) to three significant figures accuracy. The dimensionless

normal force i;r(o,tz) is shown in Fig. (9).
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7.0 EXPERIMENTS,

The measurements performed during the initial phase of the study
of Laser interaction with finite structures have been based on the
concept that the object of the investigation is to provide a careful
comparison between experimental data concerning laser generated
thermoelastic deformations and stresses in finite structures with the
theory of such processes.

It is clear that a considerable quantity of variable quality
experimental evidence has indicated that the mechanical impulse
transferred to a target by a Laser pulse could, in general, be
understood in terms of material evaporation and removal, and surface
plasma generation with and without subsequent plasma heating,

possibly involving the creation of LSC & LSD waves in the plasma.

‘Most of these studies have involved the use of either piezoelectric

detectors or ballistic impulse detection of gross target motion,
both in vacuum and in air. However, at least in the unclassified
literature, relatively little effort has been directed toward an
understanding of the Laser excitation of elastic oscillations in
finite structures. Since these phenomena are of significance in the
theoretical treatment of plate dynamics, and since induced stress
waves and target oscillations could be of practical value, we felt
that a careful comparison of theory and experiment would be both
useful and interesting.

It is immediately clear that any study of the dynamic motion
of a finite structure could involve the thermoelastic induced motion

of the target in addition to any motion induced via a plasma shock or
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material blow off. Therefore, our approach to this problem has
involved a detailed theoretical and experimental investigation of
the purely thermoelastic induced motion of a circular thin plate
clamped in such a manner that the plate has zero displacement and
slope at its outer free edge. The dimensions of the clamp ring are
outer radius l4.6cm, inner radius 11.45cm, thickness 5.7cm, and
mass 11.5kg. This clamp ring is mounted in a horizontal plane by
means of three support rodsvwhich serve to connect the clamp mount
to a.horizontal plate loaded uniformly with 460kg of lead. This
technique is necessary because access to the rear surface of the
target plate is required, and the Laser impulse is easily capable
of inducing large amplitude oscillations ;n the clamp ring when
mounted in a vertical position.

The target consisted of a type 304 stainless steel circular
plate, thickness 19.5 mil (4.95 x 10 2cm). The density of the
target material is 7.788 G cm-3, total mass 260.05 G. This target
material was chosen for two reasons; it is reasonably typical of
materials used in the aerospace industry, and the thermal diffusivity
is sufficiently low (4.1 x 10-2 cmzsec-l) so that the thermoelastic
effect is reasonably large.

The experimental apparatus utilized for this investigation is
outlined in Fig. 10. The laser used was a Holobeam model
630-Q Nd;Glass system. This laser produces an output pulse
(in the Q switched mode) of approximately 3 joules, with a pulse
width of approximately 40 x 10-9sec. The output beam is about lcm

in diameter, with a beam divergence of 2 m rad, at an output wavelength
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of 1.06u. The beam is reflected from a Cu mirror so that it irradiates
the target at perpendicular incidence. The direct beam from the laser
has an intensity of the order of 100 Hw/cmz, which is more than
sufficient to vaporize the target surface, which was not desired in
this experiment. Consequently, the beam was expanded using a negative
focal length lens to the point below which surface vaporization occurs.
In order to insure that the surface irradiation was axially symmetric,
the beam was directed after expansion through a circular aperture
which defines the area of the plate irradiated by the laser, and
insured that the laser irradiated the target at its center. This was
done in order to inhibit the generation of non-axially symmetric mode
oscillations in the target.

The beam splitter in the beam served to deflect a small portion
of the input beam into a Korad Photodiode detector so that the laser
pulse energy and powef can be monitored. The laser Q switched pulse
can, of course, be varied in energy by varying the capacitor discharge
voltage, but this is accompanied by a change in the output pulse
width. Consequently, the experiments were performed at a constant
discharge voltage corresponding to an output energy of approximately
2j. Under these conditions the beam power density was held to a
point such that no surface plasma was generated nor melting induced,
but such that the surface temperature, based upon Bechtel's treat-
ment (3], was calculated to be close to the melting point.

It was considered desirable to investigate the plate dynamic
response resulting from the thermoelastic stress utilizing a method

which did not require physical contact with the plate, since such
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contacts introduce boundary conditions which may perturb the system
dynamic response. Since the absolute amplitudes of the stress waves
generated by the laser pulse are difficult to predict, owing to un-
certainties in such parameters as the reflection coefficient,

specific heat, and thermal conductivity as a function of surface
temperature, it was desirable to provide a detection system capable

of detecting very small amplitudes of the resulting plate oscillations.

Consequently, the plate motion induced by the laser pulse was
initially detected using an optical interferometer. However, since
the amplitude of the induced motion was in fact relatively large, a
much simpler detection method, as shown in Fig. 10 was used. This
consists of a Bruel & Kjaer model MMOO4 capacitive transducer and
associated circuitry. The amplified signal is displayed on a
Tektronix 545B oscilloscope and photographed. The detector was
mounted at a separation of lmm rfrom the rear surf#ce (away from the
laser), at the center of the plate.

The oscilloscope is triggered from a signal derived from the Q-
switch Pockels cell trigger, either in the normal sweep or delayed
sweep mode. In this manner, the plate motion is known in time with
respect to the occurrance of the laser pulse, and may be examined at
any time during the oscillation utilizing the variable time delay of
the delaying sweep.

Knowing the detector sensitivity, the plate surface to detector
separation, the amplifier gain, the capacitor polarization voltage,
and the oscilloscope vertical sensitivity, the overall sensitivity of

the detector is known. Therefore, the amplitude of the plate
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oscillation can be directly determined from the oscilloscope traces.
In our case, the total sensitivity of the detection system is 1.905 x
10" volts/in. The maximum amplitude of the Laser induced thermo-
elastic oscillations observed in this experiment was 1.3 x 10.3 in,
or roughly 6.7% of the plate thickness. Under these conditions, one
is confident that the general assumptions of plate theory are valid.
The temperature rise at the rear surface of the target plate
was monitored using a thermistor detector. Since, for the values
of plate thickness, thermal diffusivity, and pulse width used in
this experiment the plate is thermally thin, the temperature at the
rear surface is a valid measure of the total energy absorbed. The
data then indicate an absorbed energy of 1.16 joule, which is
consistent with estimates of the reflection coefficient at 1.06u and

the reflection coefficient of the Cu mirror. This value of absorbed
30

energy then yields an estimate of the surface temperature of 1 x 10 Ce

which is significant only in that it agrees with the non-vaporization
or melting assumption. It is not used in our analysis of the data,
since we are focusing our interest on the plate oscillation induced
by the laser impulse.

The general features of the plate dynamic response are illus-
trated by the oscilloscope traces shown in Figs. 11-14. These
figures are oscilloscope traces for various sweep speeds of the plate
oscillations induced by the laser pulse. Several general features
of the plate response can be immediately seen in these traces. First,
the initial response of the plate consists of a rapid motion in a

direction toward the face of the plate irradiated by the laser.
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FIGURE 11

FIGURE 12
Sweep Speed 10 msec/cm.

Plate Response - Sweep Speed 20 msec/cm. 0.1 v/cm
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FIGURE 13
Sweep Speed 5 msec/cm

FIGURE 14

Sweep Speed 2 msec/cm
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This would be expected if the primary excitation of the plate were
by thermoelastic effects. An impulse arising from surface blow off,
plasma formation, or thermal effects arising from expansion of the
air in contact with the heated surface would be expected to induce
initial motion in the opposite direction. Second, the induced plate
oscillations contain many higher order modes which have been included
in the theoretical model of this process. It is clear that, as
expected, these higher order modal frequencies are damped at varying
damping rates, so that after a time of the order of 120 m sec, the
plate can be seen to be oscillating in its fundamental (i.e., lowest
order mode) frequency. As mentioned previousiy, we have not modeled
these variable damping rates in the theoretical treatment of this
problem. We have made use of the fact that the plate ultimately
oscillates in its lowest order mode to obtain the necessary material
constants for use in the theoretical model, as discussed in Appendix II.
Third, the general response of the plate consists of the initial
transient, the fundamental and higher order mode oscillations, and,
in addition, a superimposed exponential relaxation response, asso-
ciated with an effective time constant of the order of 17 m sec.
That this portion of the plate dynamic response is associated with
laser heating is shown by the fact that it is absent when the plate
oscillations are induced by mechanical impulse. This is discussed
in Appendix II. It is attractive to associate this effect with a
possible thermal pre-stress condition, and experiments relating to

that effect are continuing. To date, however, we have not included

a model of this effect in our theoretical treatment.
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The comparison, then, between the theoretical calculations of
the plate dynamic response and the experimental results is performed
in the following manner. The theoretical response curve (Fig. 5) is
based upon material constants chosen so as to agree with the actual
observed fundamental mode frequency, as discussed in the Appendix II.
On this curve, the point on the time scale (1.0) then corresponds to
a time of 8.33 m sec., and the other time points are correspondingly
known. The theoretical curve (Fig. 5) is then mounted on a flat
surface, and a transparency made from the oscilloscope trace is
projected onto the theoretical curve. The magnification of the
optical system is then varied so that the time scale of the oscillo-
scope trace agrees with the horizontal (time) scale of the theoretical
curve. Then, maintaining the time scale fixed, the flat surface on
which the theoretical curve is plotted is simply rotated so that the
vertical (amplitude) scales are normalized at any arbitrary point.

The projection of the experimental curve is then simply plotted
directly onto the theoretical curve, yielding the comparison between
theory and experiment shown in Fig. 15. This figure indicates the
comparison in response over a time corresponding to two fundamental
periods, or about 17 m sec. Comparison of the theoretical curve and
the experimental data taken at a delay time of 7 m sec, using the
variable delay of the triggered sweep, is shown in Fig. 16.

Since, as discussed previously, we have not included a consideration
of the variable higher order mode damping in our model, it is not
particularly useful to extend our comparisons much beyond a time scale

of 20 m sec. In fact, it is clear from the comparison of Fig. 15 that
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several of the higher order mode frequencies have already sufficiently
decayed and they are not contributing significantly to the actual
pPlate response.

Using the comparisons illustrated in Fig. 15 and 16, it seems
clear that the general features of the response are predicted quite
reliably. We believe that the experimental data can be taken as a
verification of the thermoelastic model of the laser interaction at

this power level.
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8.0 CONCLUSIONS

(a) A mathematical model of the Laser induced thermoelastic motion
of a plate was derived. The model consists of three partial
differential equations with associated boundary conditions.

5 Two of these equations decouple and characterize plate flexure.

i The remaining equation describes plate stretching.

(b) Laser induced heating is incorporated into the model by using
Bechtel's surface heat generation model [3].

| (c) The equations were used to solve the problem of a thin circular

3 plate clamped at its boundary. The circular plate is subjected

to Laser irradiation at its center, and normal to the plate

surface.
¥ (d) Laboratory experiments were performed to measure the center
deflection of the plate under Laser irradiation. The results
of these experiments compare well with those obtained by
4 calculations using the mathematical model.
3
L
’
N
1E
T < e T —
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APPENDIX I: NUMERICAL EVALUATION OF gi(t)

In order to resolve the forced transverse motion problem in
section 6.1 it is necessary to evaluate the function
t1
g (t)) = M(t,)-2mR, i M(6)sin 2TR (t -0)de (a-1)
where H(tl) is defined by (93). To simplify the forthcoming analysis
we will omit the subscript i on gi, 1 on tl and let w—2ﬂRi. Then (A-1)

can be rewritten as follows:

g(t) = M(t)-F(t)sin wt + G(t)cos wt (A-2)
where

t

F(t) = w | M(8)cos wbdb (a-3)
o
t

G(t) = w [ M(8)sin wBAB (A-4)
(o]

We wish to evaluate g(t) at a discrete set of points in the interval

0ostst . First, divide the interval into 2N subintervals of length

t
max
At = o (A-5)
Let t =jAt for j=0,1,2,...,2N. (A-6)
-

We note from (A-3) and (A-4) that the values of F and G at the instants

of time t2k' k=1,...,N can be evaluated consecutively as follows:

2 (x-1) t2x
P, Z () =W J M(6) cos wBda® + w [ M(8) cos wbad
» t2(k-1)
or, in other words,
Poer _ +AP (A7)
Gk i Gk.l + AGk-l k"l,?,...,“ (A-'B)
— ——— - T ——
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where,

2k

oF, _ =o M(6)cos wBad (A-9)
2 (x-1)
t2x

66, _, = M(0)sin wBde (A-10)
2 (x-1)

and F =G =0.

o O

To evaluate the integrals (A-9) and (A-10), we use a second order
Lagrange interpolation formula to approximate M(60) on the interval

Sy’ St 2o

MO = Yo 2Pake2 ¥ Yax-1V2x-1 * YaxPax i
where

Ly, = (8-t ) (8-t )/(2(a6)%) )

Loy = (B-ty, o) (£, -0)/(At)? ‘> (A-12)

Ly, = (0-t, ) (O-t, )/2007

where, Y .=M(t,) j=0,1,...,2N.

p) b
Substitution of (A-1l1) and (A-12) into (A-9) and (A-10) yields

the results
Y

AF
‘22

+b C )+

1
= - & —
k-1 YZRSZR Y2k~2s2k-2 20 (akc2k k 2k-2 (

Sox-2"S2x

(A-13)
C

+b.S.. ) +~& ¢

1
8G, ) = Yor-2Ck-2"Y2C2x * 20 AxS2*PxS2x-2 ot )

C2k-02k-2

(A-14)
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where,
Q = wAt

8y = 3y 1 Yok-2

b =Y -4 3

Rl P

¥2k-2
% = Yo M1 a2 > FReA

= i w = i Q
52k sin tZk sin 2k

C2k- cos thk = cos 2k§ /

Consequently,

-F. S _.4G C ' k=1,2,3,...,N. (A-16)

Bl T Ve

9t

To check the accuracy of this approximation, the following example,

having a closed form solution, was tested.

at

M(t) = e (A-17)
In this case
2 -at
git) = 28 -w(azsinwg-wcoswt) (A-18)

a +w

Table (A-1l) shows the comparison of the exact result from (A-18) with
the approximation (A-16) for the case tmax-l' N=10, w=2m, o=1.84.

The agreement with N=10 is seen to be quite good. Further tests with
values of w up to 200mM and N=10 indicate that the accuracy does not
decrease significantly as w increases. Another test with tmnx-l'

w=27TR where R__= m3°/m1. and N=100 was run and the agreement between

30’ 30
the exact and approximate values was at least seven and sometimes

eight decimal places.
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TABLE (A-1)

Test of Numerical Evaluation of g(t)

Exact Approximate

k to g(t) g(t)

1 5 .652293 .652290
2 .2 .082762 .082757
3 43 -.495644 -.495648
4 .4 -.865816 -.865817
5 .5 -.889538 -.889537
6 .6 -.560396 -.560392
7 J -.006310 -.006304
8 .8 .559248 .559253
9 .9 .918730 .918732
10 1.0 .933559 .933559
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Based on these observations, the final calculations in section

(6.1) were run using t =2 and N=200.
max
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APPENDIX II: EXPERIMENTAL DETERMINATION OF PLATE STIFFNESS.

It became clear even during the initial stages of this experi-
ment, in which interferometric techniques were utilized to study the
plate dynamic motion, that the fundamental frequencies observed were
in general significantly different from those predicted by handbook
values of the material constants for our selected target material.

It was therefore considered necessary to perform some calibration
experiments relating to the determination of the effective plate
stiffness, which determine the predicted plate response to the laser
pulse. Several related experimental techniques were used in this
regard, namely excitation of the plate oscillations by mechanical
impulse, electromagnetic excitation of plate oscillations, holo-
graphic analysis of static deflection, and direct measurement of
the purely fundamental mode frequencies during the laser excitation.

Since this latter method is most directly related to the main
experimental approach, we will describe it first. The circuit
outlined in Fig. Al is used. The signal from the photodiode
detector triggers the delaying sweep of the 545B. After a time
determined by the variable delay, the main sweep of the 545B is
triggered, and the main sweep signal serves as an enable gate to the
IC gate circuit. When this gate signal is present, the detected
signal from the capacitive transducer is passed to the 5245 electronic
counter operated in the period mode. Each time the laser is fired, a
measurement is obtained of the fundamental plate frequency by
delaying the main sweep trigger until the higher order modes have

damped out. The period observed in this manner was then
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a model of this effect in our theoretical treatment.
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(8.2630 * 0.0277) x 10 > sec., corresponding to a fundamental frequency
of (121.02 * 0.58) Hz.

The response of the plate to a mechanical impulse was investigated
using the apparatus outlined in Fig. A2. In this experiment, the
qechanical impulse was produced by allowing a small copper sphere to
strike the plate at its center. Since the target plate is mounted in
a horizontal position, as discussed in section 7.0 of this report,
the sphere is suspended by elastic supports so thaf it does not
contact the plate in its equilibrium position. A signal derived from
the interruption of a He-Ne laser beam passing parallel to the plate
face was used to trigger the delaying sweep of the oscilloscope in
] the same manner as the apparatus used in the main experiment.
Oscillograms of the plate response to this excitation are illustrated
in Figs. A-3 through A-5.

Several conclusions can be reached from t£ese responses. First,
it is clear that the initial plate response is in a direction away
from the mechanical impulse, as would be expected. This is in fact
the opposite effect from the thermoelastic response to the laser

impulse. Second, the oscillations induced by the mechanical impulse

are symmetric about the baseline. This is in contrast to the laser
induced plate response which exhibits an exponential transient in
addition to the plate oscillation. We therefore believe that this
transient effect is a result of the thermoelastic excitation, and

is not characteristic of the plate itself. 1In addition, the frequency
spectrum of the response to this method of excitation contains fewer

higher order modes than is the case for thermoelastic excitation.




81

uo1§D}19%3 as|ndw| |DIIUDYIBY : 2y 34nbiyg

g —
as|nd 13b6614]
J3y1dwy ¥
adoos A__
-0]119sQ
i sz_a__am v
(48  duy-ayg RV
13anpsup4| "dp)
/B
oseqy o o ik ' R = B &
9N -3H 0joyd
1108 |DI3W —%mw__w
SO




b o8

PSR W R

82

FIGURE A-3

Plate Response to Mechanical Impulse
10 ms/div 5v/div

FIGURE A-4
5 ms/div Sv/div
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FIGURE A-5
2 ms/div 5v/div
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It is clear that they are damped at variable rates, as observed in the
laser excitation. Lastly, it can be seen that the fundamental frequency
is in agreement with the laser excited frequency, as one would expect.

In order to study the plate vibration frequency spectrum, the
apparatus outlined in Fig. A6 has been used. In this experiment,
the plate oscillations are excited by means of an electromagnetic
transducer (B&K Model 0002) driven by a variable frequency oscillator.
The voltage derived from a 390 resistor in series with the transducer
is used in the feedback mode to maintain a constant amplitude of the
plate excitation as the frequency is varied. This is necessary since
the transducer presents an inductive reactance load to the oscillator.
Using this apparatus, the various modal oscillation frequencies may
be separately excited by the oscillator. The first five modes were
easily observable in this test. The observed frequencies, at a plate
temperature of 76°F were i20.1, 467, 1055, 1858, and 2900 Hz.

The value of Young's modulus for the material, or perhaps more
properly, the effective plate stiffness, may be determined from these
data using the relation:

TR
f1j - > 3 (A-19)
2ma 12(1-v )

where
Aij = modal eigen value
h = plate thickness

plate (free) radius

E = Young's Modulus
T = plate density

vV = Poisson's ratio
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During the course of this experiment, it became clear that the
resonant frequency observed was in fact highly sensitive to the ambient
plate temperature. In general, it has been observed that the lowest
order mode frequency shifts at a rate of 4.88 Hz/°F. Consequently,
the data have been taken at or near the 76°F value mentioned above.
We presently feel that this effect is probably due to a thermal
pre-stress condition arising from the fact that the thermal masses
of the massive clamp and thin plate are greatly different. Therefore,
an ambient temperature change affects the plate more rapidly than the
clamp. Theoretical analysis of this effect is continuing at present,
along with further experimental investigation of the effect of the
temperature difference (between clamp and plate) on the resonant
frequencies.

In addition, it was considered desirable to investigate the
static deflection cha?acteristics of the plate as an independent
study of the material constants of the plate. The apparatus used is
shown in Fig. A7. Weights of 10, 20, 50, and 100 G were applied to
the plate, and double exposure holograms were made of the plate.

That is, a hologram of the undeflected plate (no load) was made by
exposing the holographic plate, the holographic plate was covered,
the load applied, and a second exposure was made. After the hologram
was developed and dried, it was replaced in the plate holder and
illuminated by the reference beam only. A photograph was then made
of the holographic image thus formed. This photograph then shows an
image of the plate, superimposed on which is a series of interference

fringes resulting from the static deflection of the plate. Displacement
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values are then determined by counting the interferefce fringes from
the undeflected edge of the plate image to any point on the plate.
Since each fringe shift corresponds to a phase shift of A/2, where A
is the laser wavelength, and therefore corresponds to a total plate
deflection of A/4, the displacement can be determined to a precision
of A/4, approximately, after correction for the incidence and reflec-
tion angles. Since the deflections are then determined, the plate
characteristics, stiffness and Young's modulus, may be determined in
two separate, but related, methods of analysis. First, the equation

of the static deflection of a centrally loaded plate is given by:

P 2 22
w(r) = 81D {rtn r/a + (a -r )/2} (A-20)

where a=plate radius, r=radial distance from the plate center, P=load,
D=plate stiffness. The deflection to be expected at the plate center
(r=0) is then:

aZP - 3(1-v2)a2P

467D amh’E

(a-21)

w(0) =

Therefore, if the observed deflections at the plate center are plotted
as a function of the load (Fig. A8), then a least square fit to the
data yields a value for the slope from which E.may be calculated.
Alternatively, since the deflection, at a given load, is a
known function of radial distance, it is clear that the slope of

the plate surfice, o will have a maximum value at r=a/e of:

dr ’
2
e I (a-22)
ar meh E
r=a/e

from which E may also be determined. Note that e=2.7183 ... .




89

00}

pD07 paljddy 'sA uolyd3|33Q d14D}S :8Yy 3.nbi4

(swoib) pooT

06 0¢ O 0
T T T T T T T T 0
P
vV & b
3
g = |
S [
mx
S
b =
ob
144
9




B
=
£
3
Z
§
g

90

This procedure was carried out for the target plate used in the
laser irradiation experiments, and for a non-irradiated sheet cut from
the same original sheet.

The results indicated that the values of E determined from
equations (A-21) and (A-22) agree to within 1%. However, the value
of E determined in this manner for the non-irradiated sample was

fr lb/inz). Since the

unreasonably large (of the order of 80 x 10
values obtained from the two méthods of analysis agree, and since
the ratio of the experimental value of the slope in equation (A-3) to

the experimental value of the slope in equation (A-4), that is:

w(o) ae 3
aw 2 (A-23)
dr

r=a/e

agrees to within 1.5% of the expected value, it is believed that the
radial dependence as given in equation (A-23) is correct. It is noted
that the experimental deflections in this tes! were intentionally
1intted o small waluss (1.6 x 10°° in, sanimmd. It is possible
that the large values observed in this test are an additional
indication of a thermal pre-stress condition referred to previously.

A more interesting observation, however, was that the value of
E determined for the laser irradiated plate was about 1.7 times larger
than the non-irradiated plate. During the initial measurements on
the laser irradiation results, the plate was of course irradiated many
times, and, because the beam was not initially expanded, a laser

produced surface plasma was induced several times. Subsequently, the
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plate was pulsed repeatedly at lower power density. Consequently, we
do not know whether the apparent increase was due to the initial high
intensity impulses, the later lower intensity impulses or both.
Furthermore, after the second target plate had been used for the
thermoelastic study and the required data obtained, we irradiated it
at higher power densities, and utilized the electromagnetic transducer
(as outlined above) to determine the fundamental resonant frequency.
An increase in the value was immediately observed, again raising the
question of whether the high power pulse has resulted in an effective
increase in plate stiffness. However, until the effects of the
thermal pre-stress condition are better understood, we believe it
would be premature to assign the observation to a change in the

material constants of the plate.




